Suppose you have a topic with events that represent ticket sales of movies. In this tutorial, we'll use Flink SQL to calculate the maximum and minimum revenue of movies by year.
Let's assume the following DDL for our base movie_sales table:
CREATE TABLE movie_sales (
id INT,
title STRING,
release_year INT,
total_sales INT
);
Given the movie_sales table definition above, we can figure out the minimum and maximum movie revenue per year with the following aggregation:
SELECT
release_year,
MIN(total_sales) AS min_total_sales,
MAX(total_sales) AS max_total_sales
FROM movie_sales
GROUP BY release_year;
You can run the example backing this tutorial in one of three ways: a Flink Table API-based JUnit test, locally with the Flink SQL Client against Flink and Kafka running in Docker, or with Confluent Cloud.
Clone the confluentinc/tutorials GitHub repository (if you haven't already) and navigate to the tutorials directory:
git clone git@github.com:confluentinc/tutorials.git
cd tutorials
Run the following command to execute FlinkSqlAggregatingMinMaxTest#testMinMax:
./gradlew clean :aggregating-minmax:flinksql:test
The test starts Kafka and Schema Registry with Testcontainers, runs the Flink SQL commands above against a local Flink StreamExecutionEnvironment, and ensures that the aggregation results are what we expect.
Clone the confluentinc/tutorials GitHub repository (if you haven't already) and navigate to the tutorials directory:
git clone git@github.com:confluentinc/tutorials.git
cd tutorials
Start Flink and Kafka:
docker compose -f ./docker/docker-compose-flinksql.yml up -d
Next, open the Flink SQL Client CLI:
docker exec -it flink-sql-client sql-client.sh
Finally, run following SQL statements to create the movie_sales table backed by Kafka running in Docker, populate it with test data, and run the aggregating min/max query.
CREATE TABLE movie_sales (
id INT,
title STRING,
release_year INT,
total_sales INT
) WITH (
'connector' = 'kafka',
'topic' = 'movie-sales',
'properties.bootstrap.servers' = 'broker:9092',
'scan.startup.mode' = 'earliest-offset',
'key.format' = 'raw',
'key.fields' = 'id',
'value.format' = 'avro-confluent',
'value.avro-confluent.url' = 'http://schema-registry:8081',
'value.fields-include' = 'EXCEPT_KEY'
);
INSERT INTO movie_sales VALUES
(0, 'Avengers: Endgame', 2019, 856980506),
(1, 'Captain Marvel', 2019, 426829839),
(2, 'Toy Story 4', 2019, 401486230),
(3, 'The Lion King', 2019, 385082142),
(4, 'Black Panther', 2018, 700059566),
(5, 'Avengers: Infinity War', 2018, 678815482),
(6, 'Deadpool 2', 2018, 324512774),
(7, 'Beauty and the Beast', 2017, 517218368),
(8, 'Wonder Woman', 2017, 412563408),
(9, 'Star Wars Ep. VIII: The Last Jedi', 2017, 517218368);
SELECT
release_year,
MIN(total_sales) AS min_total_sales,
MAX(total_sales) AS max_total_sales
FROM movie_sales
GROUP BY release_year;
The query output should look like this:
release_year min_total_sales max_total_sales
2017 412563408 517218368
2019 385082142 856980506
2018 324512774 700059566
When you are finished, clean up the containers used for this tutorial by running:
docker compose -f ./docker/docker-compose-flinksql.yml down
In the Confluent Cloud Console, navigate to your environment and then click the Open SQL Workspace button for the compute pool that you have created.
Select the default catalog (Confluent Cloud environment) and database (Kafka cluster) to use with the dropdowns at the top right.
Finally, run following SQL statements to create the movie_sales table, populate it with test data, and run the aggregating min/max query.
CREATE TABLE movie_sales (
id INT,
title STRING,
release_year INT,
total_sales INT
);
INSERT INTO movie_sales VALUES
(0, 'Avengers: Endgame', 2019, 856980506),
(1, 'Captain Marvel', 2019, 426829839),
(2, 'Toy Story 4', 2019, 401486230),
(3, 'The Lion King', 2019, 385082142),
(4, 'Black Panther', 2018, 700059566),
(5, 'Avengers: Infinity War', 2018, 678815482),
(6, 'Deadpool 2', 2018, 324512774),
(7, 'Beauty and the Beast', 2017, 517218368),
(8, 'Wonder Woman', 2017, 412563408),
(9, 'Star Wars Ep. VIII: The Last Jedi', 2017, 517218368);
SELECT
release_year,
MIN(total_sales) AS min_total_sales,
MAX(total_sales) AS max_total_sales
FROM movie_sales
GROUP BY release_year;
The query output should look like this: