Get Started Free
Tutorial

How to filter duplicate events per-time window from a Kafka topic with Kafka Streams

How to filter duplicate events per-time window from a Kafka topic with Kafka Streams

Consider a topic with events that represent clicks on a website. Each event contains an IP address, a URL, and a timestamp. In this tutorial, we'll write a program that filters duplicate click events by the IP address within a window of time.

 builder.stream(INPUT_TOPIC, Consumed.with(Serdes.String(), clicksSerde))
        .processValues(() -> new DeduplicationProcessor<>(windowSize.toMillis(), (key, value) -> value.ip()), STORE_NAME)
        .filter((k, v) -> v != null)
        .to(OUTPUT_TOPIC, Produced.with(Serdes.String(), clicksSerde));

Note how the Kafka Streams topology uses a custom processor the DeduplicationProcessor and a Window Store, to filter out the duplicate IP addresses. Events are de-duped within a 2-minute window, and unique clicks are produced to a new topic.

Let's take a look at the core logic of the DeduplicationProcessor:

 public void process(FixedKeyRecord<K, V> fixedKeyRecord) {
            K key = fixedKeyRecord.key();
            V value = fixedKeyRecord.value();
            final E eventId = idExtractor.apply(key, value);
            if (eventId == null) {
                context.forward(fixedKeyRecord);  <1>
            } else {
                final V output;
                if (isDuplicate(eventId)) {
                    output = null;            <2>
                    updateTimestampOfExistingEventToPreventExpiry(eventId, context.currentStreamTimeMs());
                } else {
                    output = value;       <3>
                    rememberNewEvent(eventId, context.currentStreamTimeMs());
                }
                context.forward(fixedKeyRecord.withValue(output)); <4>
            }
        }
  1. If the event id is not found, forward the record downstream.
  2. If the record is a duplicate set the value to null and forward it and update the expiration timestamp. A downstream filter operator will remove the null value.
  3. Otherwise, the record is not a duplicate, set the timestamp for expiration and forward the value.
  4. The processor uses theforward method to send the record to the next processor in the topology.

The following steps use Confluent Cloud. To run the tutorial locally with Docker, skip to the Docker instructions section at the bottom.

Prerequisites

  • A Confluent Cloud account
  • The Confluent CLI installed on your machine
  • Apache Kafka or Confluent Platform (both include the Kafka Streams application reset tool)
  • Clone the confluentinc/tutorials repository and navigate into its top-level directory:
    git clone git@github.com:confluentinc/tutorials.git
    cd tutorials

Create Confluent Cloud resources

Login to your Confluent Cloud account:

confluent login --prompt --save

Install a CLI plugin that will streamline the creation of resources in Confluent Cloud:

confluent plugin install confluent-quickstart

Run the plugin from the top-level directory of the tutorials repository to create the Confluent Cloud resources needed for this tutorial. Note that you may specify a different cloud provider (gcp or azure) or region. You can find supported regions in a given cloud provider by running confluent kafka region list --cloud <CLOUD>.

confluent quickstart \
  --environment-name kafka-streams-deduplication-windowed-env \
  --kafka-cluster-name kafka-streams-deduplication-windowed-cluster \
  --create-kafka-key \
  --kafka-java-properties-file ./deduplication-windowed/kstreams/src/main/resources/cloud.properties

The plugin should complete in under a minute.

Create topics

Create the input and output topics for the application:

confluent kafka topic create distinct-input-topic
confluent kafka topic create distinct-output-topic

Start a console producer:

confluent kafka topic produce distinct-input-topic

Enter a few JSON-formatted click events:

{"ip":"10.0.0.1", "url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html", "timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:03"}
{"ip":"10.0.0.1", "url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html", "timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:03"}

Enter Ctrl+C to exit the console producer.

Compile and run the application

Compile the application from the top-level tutorials repository directory:

./gradlew deduplication-windowed:kstreams:shadowJar

Navigate into the application's home directory:

cd deduplication-windowed/kstreams

Run the application, passing the Kafka client configuration file generated when you created Confluent Cloud resources:

java -cp ./build/libs/find-distinct-standalone.jar \
    io.confluent.developer.FindDistinctEvents \
    ./src/main/resources/cloud.properties

Validate that you see only one event per IP address in the distinct-output-topic topic.

confluent kafka topic consume distinct-output-topic -b

You should see:

{"ip":"10.0.0.1","url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html","timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2","url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen","timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3","url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen","timestamp":"2025-08-16T14:53:43+00:03"}

Clean up

When you are finished, delete the kafka-streams-deduplication-windowed-env environment by first getting the environment ID of the form env-123456 corresponding to it:

confluent environment list

Delete the environment, including all resources created for this tutorial:

confluent environment delete <ENVIRONMENT ID>
Docker instructions

Prerequisites

  • Docker running via Docker Desktop or Docker Engine
  • Docker Compose. Ensure that the command docker compose version succeeds.
  • Clone the confluentinc/tutorials repository and navigate into its top-level directory:
    git clone git@github.com:confluentinc/tutorials.git
    cd tutorials

Start Kafka in Docker

Start Kafka with the following command run from the top-level tutorials repository directory:

docker compose -f ./docker/docker-compose-kafka.yml up -d

Create topics

Open a shell in the broker container:

docker exec -it broker /bin/bash

Create the input and output topics for the application:

kafka-topics --bootstrap-server localhost:9092 --create --topic distinct-input-topic
kafka-topics --bootstrap-server localhost:9092 --create --topic distinct-output-topic

Start a console producer:

kafka-console-producer --bootstrap-server localhost:9092 --topic distinct-input-topic

Enter a few JSON-formatted click events:

{"ip":"10.0.0.1", "url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html", "timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:03"}
{"ip":"10.0.0.1", "url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html", "timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3", "url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen", "timestamp":"2025-08-16T14:53:43+00:03"}

Enter Ctrl+C to exit the console producer.

Compile and run the application

On your local machine, compile the app:

./gradlew deduplication-windowed:kstreams:shadowJar

Navigate into the application's home directory:

cd deduplication-windowed/kstreams

Run the application, passing the local.properties Kafka client configuration file that points to the broker's bootstrap servers endpoint at localhost:9092:

java -cp ./build/libs/find-distinct-standalone.jar \
    io.confluent.developer.FindDistinctEvents \
    ./src/main/resources/local.properties

Validate that you see only one event per IP address in the distinct-output-topic topic. In the broker container shell:

kafka-console-consumer --bootstrap-server localhost:9092 --topic distinct-output-topic --from-beginning

You should see:

{"ip":"10.0.0.1","url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html","timestamp":"2025-08-16T14:53:43+00:00"}
{"ip":"10.0.0.2","url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen","timestamp":"2025-08-16T14:53:43+00:01"}
{"ip":"10.0.0.3","url":"https://www.confluent.io/hub/confluentinc/kafka-connect-datagen","timestamp":"2025-08-16T14:53:43+00:03"}

Clean up

From your local machine, stop the broker container:

docker compose -f ./docker/docker-compose-kafka.yml down
Do you have questions or comments? Join us in the #confluent-developer community Slack channel to engage in discussions with the creators of this content.