If you have time series events in a Kafka topic, session windows let you group and aggregate them into variable-size, non-overlapping time intervals based on a configurable inactivity period.
For example, suppose that you have a topic with events that represent website clicks. The following topology definition counts the number of clicks per source IP address for windows that close after 5 minutes of inactivity.
builder.stream(INPUT_TOPIC, Consumed.with(Serdes.String(), clickSerde))
.groupByKey()
.windowedBy(SessionWindows.ofInactivityGapAndGrace(Duration.ofMinutes(5), Duration.ofSeconds(30)))
.count()
.toStream()
.map((windowedKey, count) -> {
String start = timeFormatter.format(windowedKey.window().startTime());
String end = timeFormatter.format(windowedKey.window().endTime());
String sessionInfo = String.format("Session info started: %s ended: %s with count %s", start, end, count);
return KeyValue.pair(windowedKey.key(), sessionInfo);
})
.to(OUTPUT_TOPIC, Produced.with(Serdes.String(), Serdes.String()));
Let's review the key points in this example.
.groupByKey()
Aggregations must group records by key. By not passing an argument, we use the current key (the source IP address).
.windowedBy(SessionWindows.ofInactivityGapAndGrace(Duration.ofMinutes(5), Duration.ofSeconds(30)))
This creates a new SessionWindowedKStream over which we can aggregate. The session windows close after 5 minutes of inactivity, and we allow data to arrive late by as much as 30 seconds.
.count()
The count() operator is a convenience aggregation method. Under the covers it works like any other aggregation in Kafka Streams — i.e., it requires an Initializer, Aggregator and a Materialized to set the Serde for the value since it's a long. But, since the result of this aggregation is a simple count, Kafka Streams handles those details for you.
.toStream()
.map((windowedKey, count) -> {
String start = timeFormatter.format(windowedKey.window().startTime());
String end = timeFormatter.format(windowedKey.window().endTime());
String sessionInfo = String.format("Session info started: %s ended: %s with count %s", start, end, count);
return KeyValue.pair(windowedKey.key(), sessionInfo);
})
.to(OUTPUT_TOPIC, Produced.with(Serdes.String(), Serdes.String()));
Aggregations in Kafka Streams return a KTable instance, so it's converted to a KStream. Then map converts to the expected data types. The value is a formatted String containing session information.
The following steps use Confluent Cloud. To run the tutorial locally with Docker, skip to the Docker instructions section at the bottom.
git clone git@github.com:confluentinc/tutorials.git
cd tutorials
Login to your Confluent Cloud account:
confluent login --prompt --save
Install a CLI plugin that will streamline the creation of resources in Confluent Cloud:
confluent plugin install confluent-quickstart
Run the plugin from the top-level directory of the tutorials repository to create the Confluent Cloud resources needed for this tutorial. Note that you may specify a different cloud provider (gcp or azure) or region. You can find supported regions in a given cloud provider by running confluent kafka region list --cloud <CLOUD>.
confluent quickstart \
--environment-name kafka-streams-session-windows-env \
--kafka-cluster-name kafka-streams-session-windows-cluster \
--create-kafka-key \
--kafka-java-properties-file ./session-windows/kstreams/src/main/resources/cloud.properties
The plugin should complete in under a minute.
Create the input and output topics for the application:
confluent kafka topic create clicks
confluent kafka topic create sessions
Start a console producer:
confluent kafka topic produce clicks --parse-key --delimiter :
Enter a few JSON-formatted clicks:
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757966638000, "url":"https://shd.com/index.html"}
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757967148000, "url":"https://shd.com/about.html"}
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757967648000, "url":"https://shd.com/index.html"}
Enter Ctrl+C to exit the console producer.
Compile the application from the top-level tutorials repository directory:
./gradlew session-windows:kstreams:shadowJar
Navigate into the application's home directory:
cd session-windows/kstreams
Run the application, passing the Kafka client configuration file generated when you created Confluent Cloud resources:
java -cp ./build/libs/session-windows-standalone.jar \
io.confluent.developer.SessionWindow \
./src/main/resources/cloud.properties
Validate that you see three separate sessions in the sessions topic.
confluent kafka topic consume sessions -b \
--print-key --delimiter : --value-format integer
You should see:
182.12.112.1:Session info started: 4:03:58 PM EDT ended: 4:03:58 PM EDT with count 1
182.12.112.1:Session info started: 4:12:28 PM EDT ended: 4:12:28 PM EDT with count 1
182.12.112.1:Session info started: 4:20:48 PM EDT ended: 4:20:48 PM EDT with count 1
When you are finished, delete the kafka-streams-session-windows-env environment by first getting the environment ID of the form env-123456 corresponding to it:
confluent environment list
Delete the environment, including all resources created for this tutorial:
confluent environment delete <ENVIRONMENT ID>
git clone git@github.com:confluentinc/tutorials.git
cd tutorials
Start Kafka with the following command run from the top-level tutorials repository directory:
docker compose -f ./docker/docker-compose-kafka.yml up -d
Open a shell in the broker container:
docker exec -it broker /bin/bash
Create the input and output topics for the application:
kafka-topics --bootstrap-server localhost:9092 --create --topic clicks
kafka-topics --bootstrap-server localhost:9092 --create --topic sessions
Start a console producer:
kafka-console-producer --bootstrap-server localhost:9092 --topic clicks \
--property "parse.key=true" --property "key.separator=:"
Enter a few JSON-formatted clicks:
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757966638000, "url":"https://shd.com/index.html"}
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757967148000, "url":"https://shd.com/about.html"}
182.12.112.1:{"ip":"182.12.112.1", "timestamp":1757967648000, "url":"https://shd.com/index.html"}
Enter Ctrl+C to exit the console producer.
On your local machine, compile the app:
./gradlew session-windows:kstreams:shadowJar
Navigate into the application's home directory:
cd session-windows/kstreams
Run the application, passing the local.properties Kafka client configuration file that points to the broker's bootstrap servers endpoint at localhost:9092:
java -cp ./build/libs/session-windows-standalone.jar \
io.confluent.developer.SessionWindow \
./src/main/resources/local.properties
Validate that you see three separate sessions in the sessions topic. In the broker container shell:
kafka-console-consumer --bootstrap-server localhost:9092 --topic sessions --from-beginning \
--property "print.key=true" --property "key.separator=:" \
--property "value.deserializer=org.apache.kafka.common.serialization.IntegerDeserializer"
You should see:
182.12.112.1:Session info started: 4:03:58 PM EDT ended: 4:03:58 PM EDT with count 1
182.12.112.1:Session info started: 4:12:28 PM EDT ended: 4:12:28 PM EDT with count 1
182.12.112.1:Session info started: 4:20:48 PM EDT ended: 4:20:48 PM EDT with count 1
From your local machine, stop the broker container:
docker compose -f ./docker/docker-compose-kafka.yml down