Get Started Free
Tutorial

How to aggregate over sliding windows with Kafka Streams

How to aggregate over sliding windows with Kafka Streams

If you have time series events in a Kafka topic, sliding windows let you group and aggregate them in small fixed-size, contiguous time intervals. Semantically, this is the same idea as hopping windows; however, for performance reasons, hopping windows aren't the best solution for small time increments.

For example, you have a topic with events that represent temperature readings from a sensor. The following topology definition computes the average temperature for a given sensor over small 0.5-second sliding windows.

    builder.stream(INPUT_TOPIC, Consumed.with(Serdes.String(), tempReadingSerde))
            .groupByKey()
            .windowedBy(SlidingWindows.ofTimeDifferenceAndGrace(Duration.ofMillis(500), Duration.ofMillis(100)))
            .aggregate(() -> new TempAverage(0, 0),
                    (key, value, agg) -> new TempAverage(agg.total() + value.temp(), agg.num_readings() + 1),
                    Materialized.with(Serdes.String(), tempAverageSerde))
            .toStream()
            .map((Windowed<String> key, TempAverage tempAverage) -> {
                double aveNoFormat = tempAverage.total()/(double)tempAverage.num_readings();
                double formattedAve = Double.parseDouble(String.format("%.2f", aveNoFormat));
                return new KeyValue<>(key.key(),formattedAve) ;
            })
            .to(OUTPUT_TOPIC, Produced.with(Serdes.String(), Serdes.Double()));

Let's review the key points in this example

    .groupByKey()

Aggregations must group records by key so grouping by key is the first step in the topology.

    .windowedBy(SlidingWindows.ofTimeDifferenceAndGrace(Duration.ofMillis(500), Duration.ofMillis(100)))

This creates a new TimeWindowedKStream that we can aggregate. The sliding windows are 500 ms long, and we allow data to arrive late by as much as 100 ms.

    .aggregate(() -> new TempAverage(0, 0),
                    (key, value, agg) -> new TempAverage(agg.total() + value.temp(), agg.num_readings() + 1),
                    Materialized.with(Serdes.String(), tempAverageSerde))

Here we update the sum of temperature readings and the number of readings processed. These values are used to calculate the average temperature downstream in the topology.

    .toStream()
    .map((Windowed<String> key, TempAverage tempAverage) -> {
        double aveNoFormat = tempAverage.total()/(double)tempAverage.num_readings();
        double formattedAve = Double.parseDouble(String.format("%.2f", aveNoFormat));
        return new KeyValue<>(key.key(),formattedAve) ;
    })
    .to(OUTPUT_TOPIC, Produced.with(Serdes.String(), Serdes.Double()));

Aggregations in Kafka Streams return a KTable instance, so it's converted to a KStream. Then map is used to calculate the average temperature before we finally emit the aggregate to the output topic.

The following steps use Confluent Cloud. To run the tutorial locally with Docker, skip to the Docker instructions section at the bottom.

Prerequisites

  • A Confluent Cloud account
  • The Confluent CLI installed on your machine
  • Apache Kafka or Confluent Platform (both include the Kafka Streams application reset tool)
  • Clone the confluentinc/tutorials repository and navigate into its top-level directory:
    git clone git@github.com:confluentinc/tutorials.git
    cd tutorials

Create Confluent Cloud resources

Login to your Confluent Cloud account:

confluent login --prompt --save

Install a CLI plugin that will streamline the creation of resources in Confluent Cloud:

confluent plugin install confluent-quickstart

Run the plugin from the top-level directory of the tutorials repository to create the Confluent Cloud resources needed for this tutorial. Note that you may specify a different cloud provider (gcp or azure) or region. You can find supported regions in a given cloud provider by running confluent kafka region list --cloud <CLOUD>.

confluent quickstart \
  --environment-name kafka-streams-sliding-windows-env \
  --kafka-cluster-name kafka-streams-sliding-windows-cluster \
  --create-kafka-key \
  --kafka-java-properties-file ./sliding-windows/kstreams/src/main/resources/cloud.properties

The plugin should complete in under a minute.

Create topics

Create the input and output topics for the application:

confluent kafka topic create temp-readings
confluent kafka topic create output-topic

Start a console producer:

confluent kafka topic produce temp-readings --parse-key --delimiter :

Enter a few JSON-formatted temperature readings:

device-1:{"temp":80.0,"timestamp":1757703142,"device_id":"device-1"}
device-1:{"temp":90.0,"timestamp":1757703142,"device_id":"device-1"}
device-1:{"temp":95.0,"timestamp":1757703142,"device_id":"device-1"}
device-1:{"temp":100.0,"timestamp":1757703142,"device_id":"device-1"}

Enter Ctrl+C to exit the console producer.

Compile and run the application

Compile the application from the top-level tutorials repository directory:

./gradlew sliding-windows:kstreams:shadowJar

Navigate into the application's home directory:

cd sliding-windows/kstreams

Run the application, passing the Kafka client configuration file generated when you created Confluent Cloud resources:

java -cp ./build/libs/sliding-windows-standalone.jar \
    io.confluent.developer.SlidingWindow \
    ./src/main/resources/cloud.properties

Validate that you see the correct temperature averages in the output-topic topic.

confluent kafka topic consume output-topic -b \
  --print-key --delimiter : --value-format double

You should see the average updated within the same sliding window:

device-1:80.0
device-1:85.0
device-1:88.33
device-1:91.25

Clean up

When you are finished, delete the kafka-streams-sliding-windows-env environment by first getting the environment ID of the form env-123456 corresponding to it:

confluent environment list

Delete the environment, including all resources created for this tutorial:

confluent environment delete <ENVIRONMENT ID>
Docker instructions

Prerequisites

  • Docker running via Docker Desktop or Docker Engine
  • Docker Compose. Ensure that the command docker compose version succeeds.
  • Clone the confluentinc/tutorials repository and navigate into its top-level directory:
    git clone git@github.com:confluentinc/tutorials.git
    cd tutorials

Start Kafka in Docker

Start Kafka with the following command run from the top-level tutorials repository directory:

docker compose -f ./docker/docker-compose-kafka.yml up -d

Create topics

Open a shell in the broker container:

docker exec -it broker /bin/bash

Create the input and output topics for the application:

kafka-topics --bootstrap-server localhost:9092 --create --topic temp-readings
kafka-topics --bootstrap-server localhost:9092 --create --topic output-topic

Start a console producer:

kafka-console-producer --bootstrap-server localhost:9092 --topic temp-readings \
  --property "parse.key=true" --property "key.separator=:"

Enter a few JSON-formatted temperature readings:

device-1:{"temp":80.0,"timestamp":1757703142,"device_id":"device-1"}
device-1:{"temp":90.0,"timestamp":1757703143,"device_id":"device-1"}
device-1:{"temp":95.0,"timestamp":1757703144,"device_id":"device-1"}
device-1:{"temp":100.0,"timestamp":1757703145,"device_id":"device-1"}

Enter Ctrl+C to exit the console producer.

Compile and run the application

On your local machine, compile the app:

./gradlew sliding-windows:kstreams:shadowJar

Navigate into the application's home directory:

cd sliding-windows/kstreams

Run the application, passing the local.properties Kafka client configuration file that points to the broker's bootstrap servers endpoint at localhost:9092:

java -cp ./build/libs/sliding-windows-standalone.jar \
    io.confluent.developer.SlidingWindow \
    ./src/main/resources/local.properties

Validate that you see the correct temperature averages in the output-topic topic.

kafka-console-consumer --bootstrap-server localhost:9092 --topic output-topic --from-beginning \
  --property "print.key=true" --property "key.separator=:" \
  --property "value.deserializer=org.apache.kafka.common.serialization.DoubleDeserializer"

You should see the average updated within the same sliding window:

device-1:80.0
device-1:85.0
device-1:88.33
device-1:91.25

Clean up

From your local machine, stop the broker container:

docker compose -f ./docker/docker-compose-kafka.yml down
Do you have questions or comments? Join us in the #confluent-developer community Slack channel to engage in discussions with the creators of this content.