If you have time series events in a Kafka topic, how can you group them into variable-size, non-overlapping time intervals based on a configurable inactivity period?
Create a TABLE
with the WINDOW SESSION
syntax, and specify the maximum inactivity period defining a session within the parentheses.
CREATE TABLE IP_SESSIONS AS
SELECT IP,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWSTART),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_START_TS,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWEND),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_END_TS,
COUNT(*) AS CLICK_COUNT,
WINDOWEND - WINDOWSTART AS SESSION_LENGTH_MS
FROM CLICKS
WINDOW SESSION (5 MINUTES)
GROUP BY IP;
This tutorial installs Confluent Platform using Docker. Before proceeding:
• Install Docker Desktop (version 4.0.0
or later) or Docker Engine (version 19.03.0
or later) if you don’t already have it
• Install the Docker Compose plugin if you don’t already have it. This isn’t necessary if you have Docker Desktop since it includes Docker Compose.
• Start Docker if it’s not already running, either by starting Docker Desktop or, if you manage Docker Engine with systemd
, via systemctl
• Verify that Docker is set up properly by ensuring no errors are output when you run docker info
and docker compose version
on the command line
To get started, make a new directory anywhere you’d like for this project:
mkdir session-windows && cd session-windows
Then make the following directories to set up its structure:
mkdir src test
Next, create the following docker-compose.yml
file to obtain Confluent Platform (for Kafka in the cloud, see Confluent Cloud):
version: '2'
services:
broker:
image: confluentinc/cp-kafka:7.4.1
hostname: broker
container_name: broker
ports:
- 29092:29092
environment:
KAFKA_BROKER_ID: 1
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT,CONTROLLER:PLAINTEXT
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:9092,PLAINTEXT_HOST://localhost:29092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
KAFKA_PROCESS_ROLES: broker,controller
KAFKA_NODE_ID: 1
KAFKA_CONTROLLER_QUORUM_VOTERS: 1@broker:29093
KAFKA_LISTENERS: PLAINTEXT://broker:9092,CONTROLLER://broker:29093,PLAINTEXT_HOST://0.0.0.0:29092
KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT
KAFKA_CONTROLLER_LISTENER_NAMES: CONTROLLER
KAFKA_LOG_DIRS: /tmp/kraft-combined-logs
CLUSTER_ID: MkU3OEVBNTcwNTJENDM2Qk
schema-registry:
image: confluentinc/cp-schema-registry:7.3.0
hostname: schema-registry
container_name: schema-registry
depends_on:
- broker
ports:
- 8081:8081
environment:
SCHEMA_REGISTRY_HOST_NAME: schema-registry
SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: broker:9092
ksqldb:
image: confluentinc/ksqldb-server:0.28.2
hostname: ksqldb
container_name: ksqldb
depends_on:
- broker
- schema-registry
ports:
- 8088:8088
environment:
KSQL_CONFIG_DIR: /etc/ksqldb
KSQL_BOOTSTRAP_SERVERS: broker:9092
KSQL_HOST_NAME: ksqldb
KSQL_APPLICATION_ID: app01
KSQL_LISTENERS: http://0.0.0.0:8088
KSQL_CACHE_MAX_BYTES_BUFFERING: 0
KSQL_KSQL_SCHEMA_REGISTRY_URL: http://schema-registry:8081
volumes:
- ./src:/opt/app/src
- ./test:/opt/app/test
And launch it by running:
docker compose up -d
To begin developing interactively, open up the ksqlDB CLI:
docker exec -it ksqldb ksql http://ksqldb:8088
The first thing we’ll do is create and populate the stream of click data. An important characteristic of this data is the timestamp because this is what drives the session window. ksqlDB can use either the Kafka message timestamp, or a field from the message value as the timestamp. In this example we’ll use the latter—the event time as stored in the timestamp
field of the message value.
CREATE STREAM clicks (ip VARCHAR, url VARCHAR, timestamp VARCHAR)
WITH (KAFKA_TOPIC='clicks',
TIMESTAMP='timestamp',
TIMESTAMP_FORMAT='yyyy-MM-dd''T''HH:mm:ssX',
PARTITIONS=1,
VALUE_FORMAT='Avro');
Once the stream is created, insert some data to it. Note how the timestamps show how there are different sessions for each IP address.
INSERT INTO clicks (ip, timestamp, url) VALUES ('51.56.119.117',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP()),'yyyy-MM-dd''T''HH:mm:ssX'),'/etiam/justo/etiam/pretium/iaculis.xml');
INSERT INTO clicks (ip, timestamp, url) VALUES ('51.56.119.117',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (60 * 1000)),'yyyy-MM-dd''T''HH:mm:ssX'),'/nullam/orci/pede/venenatis.json');
INSERT INTO clicks (ip, timestamp, url) VALUES ('53.170.33.192',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (91 * 1000)),'yyyy-MM-dd''T''HH:mm:ssX'),'/mauris/morbi/non.jpg');
INSERT INTO clicks (ip, timestamp, url) VALUES ('51.56.119.117',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (96 * 1000)),'yyyy-MM-dd''T''HH:mm:ssX'),'/convallis/nunc/proin.jsp');
INSERT INTO clicks (ip, timestamp, url) VALUES ('53.170.33.192',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (2 * 60 * 1000)),'yyyy-MM-dd''T''HH:mm:ssX'),'/vestibulum/vestibulum/ante/ipsum/primis/in.json');
INSERT INTO clicks (ip, timestamp, url) VALUES ('51.56.119.117',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (63 * 60 * 1000) + 21),'yyyy-MM-dd''T''HH:mm:ssX'),'/vehicula/consequat/morbi/a/ipsum/integer/a.jpg');
INSERT INTO clicks (ip, timestamp, url) VALUES ('51.56.119.117',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (63 * 60 * 1000) + 50),'yyyy-MM-dd''T''HH:mm:ssX'),'/pede/venenatis.jsp');
INSERT INTO clicks (ip, timestamp, url) VALUES ('53.170.33.192',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (100 * 60 * 1000)),'yyyy-MM-dd''T''HH:mm:ssX'),'/nec/euismod/scelerisque/quam.xml');
INSERT INTO clicks (ip, timestamp, url) VALUES ('53.170.33.192',FORMAT_TIMESTAMP(FROM_UNIXTIME(UNIX_TIMESTAMP() + (100 * 60 * 1000) + 9),'yyyy-MM-dd''T''HH:mm:ssX'),'/ligula/nec/sem/duis.jsp');
Now that you have stream with some events in it, let’s start to use them. The first thing that we’ll do is ensure that the timestamp that ksqlDB will use for our time-based aggregation is the one that we expect. ksqlDB’s timestamp is exposed as a column called ROWTIME
, and we can compare this to our declared timestamp
column; they should match.
Before checking the timestamps, set the following property to ensure that you’re reading from the beginning of the stream:
SET 'auto.offset.reset' = 'earliest';
Now compare the timestamp we want to use (timestamp
column) with the system column exposing how KSQL sees the timestamp (ROWTIME
):
SELECT FORMAT_TIMESTAMP(FROM_UNIXTIME(ROWTIME),'yyyy-MM-dd HH:mm:ss', 'UTC') AS ROWTIME_STR, TIMESTAMP FROM CLICKS EMIT CHANGES LIMIT 5;
You should see that both columns match in time value (only the formatting differs):
+--------------------+--------------------+
|ROWTIME_STR |TIMESTAMP |
+--------------------+--------------------+
|2019-07-18 10:00:00 |2019-07-18T10:00:00Z|
|2019-07-18 10:01:00 |2019-07-18T10:01:00Z|
|2019-07-18 10:01:31 |2019-07-18T10:01:31Z|
|2019-07-18 10:01:36 |2019-07-18T10:01:36Z|
|2019-07-18 10:02:00 |2019-07-18T10:02:00Z|
Limit Reached
Query terminated
Now let’s see how many clicks were made in each user session (based on IP address), and also calculate the duration of the session. To do that, we issue the following transient push query to aggregate the clicks grouped by the IP address. We declare that we want to use session windowing, with a gap of five minutes or more denoting the end of the previous session. The query also captures the window start and end times, and it uses these to calculate the session duration.
For the purposes of this example only, we are also going to configure ksqlDB to buffer the aggregates as it builds them. This makes the query feel like it responds more slowly, but it means that you get just one row per window. This makes it simpler to understand the concept:
SET 'ksql.streams.cache.max.bytes.buffering'='2000000';
The following will block and continue to return results until its limit is reached or you tell it to stop.
SELECT IP,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWSTART),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_START_TS,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWEND),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_END_TS,
COUNT(*) AS CLICK_COUNT,
WINDOWEND - WINDOWSTART AS SESSION_LENGTH_MS
FROM CLICKS
WINDOW SESSION (5 MINUTES)
GROUP BY IP
EMIT CHANGES LIMIT 4;
This should yield the following output:
+--------------------+--------------------+--------------------+--------------------+--------------------+
|IP |SESSION_START_TS |SESSION_END_TS |CLICK_COUNT |SESSION_LENGTH_MS |
+--------------------+--------------------+--------------------+--------------------+--------------------+
|51.56.119.117 |2019-07-18 10:00:00 |2019-07-18 10:01:36 |3 |96000 |
|53.170.33.192 |2019-07-18 10:01:31 |2019-07-18 10:02:00 |2 |29000 |
|51.56.119.117 |2019-07-18 11:03:21 |2019-07-18 11:03:50 |2 |29000 |
|53.170.33.192 |2019-07-18 11:40:00 |2019-07-18 11:40:09 |2 |9000 |
Limit Reached
Query terminated
When ksqlDB builds aggregates, it emits the values as new messages are processed, meaning that you may see intermediate results on the screen too. When ksql.streams.cache.max.bytes.buffering
was set above, this suppressed these. If you change the value to zero and re-run the above query you’ll see the intermediate emissions too:
SET 'ksql.streams.cache.max.bytes.buffering'='0';
SELECT IP,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWSTART),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_START_TS,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWEND),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_END_TS,
COUNT(*) AS CLICK_COUNT,
WINDOWEND - WINDOWSTART AS SESSION_LENGTH_MS
FROM CLICKS
WINDOW SESSION (5 MINUTES)
GROUP BY IP
EMIT CHANGES
LIMIT 9;
This time you’ll see each aggregate update and be re-emitted as new messages are processed:
+--------------------+--------------------+--------------------+--------------------+--------------------+
|IP |SESSION_START_TS |SESSION_END_TS |CLICK_COUNT |SESSION_LENGTH_MS |
+--------------------+--------------------+--------------------+--------------------+--------------------+
|51.56.119.117 |2019-07-18 10:00:00 |2019-07-18 10:00:00 |1 |0 |
|51.56.119.117 |2019-07-18 10:00:00 |2019-07-18 10:01:00 |2 |60000 |
|53.170.33.192 |2019-07-18 10:01:31 |2019-07-18 10:01:31 |1 |0 |
|51.56.119.117 |2019-07-18 10:00:00 |2019-07-18 10:01:36 |3 |96000 |
|53.170.33.192 |2019-07-18 10:01:31 |2019-07-18 10:02:00 |2 |29000 |
|51.56.119.117 |2019-07-18 11:03:21 |2019-07-18 11:03:21 |1 |0 |
|51.56.119.117 |2019-07-18 11:03:21 |2019-07-18 11:03:50 |2 |29000 |
|53.170.33.192 |2019-07-18 11:40:00 |2019-07-18 11:40:00 |1 |0 |
|53.170.33.192 |2019-07-18 11:40:00 |2019-07-18 11:40:09 |2 |9000 |
Limit Reached
Query terminated
Now let’s take this snapshot, and persist it as a table, populated continually by the results of the ongoing query:
CREATE TABLE IP_SESSIONS AS
SELECT IP,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWSTART),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_START_TS,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWEND),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_END_TS,
COUNT(*) AS CLICK_COUNT,
WINDOWEND - WINDOWSTART AS SESSION_LENGTH_MS
FROM CLICKS
WINDOW SESSION (5 MINUTES)
GROUP BY IP;
This creates and populate a table that we could query with a SELECT
, but also a Kafka topic, which we can examine from within KSQL using PRINT
.
PRINT IP_SESSIONS FROM BEGINNING LIMIT 5;
Notice the key for each message. ksqlDB has combined the grouping key (IP address) with its window boundaries. It should look something like this:
Key format: SESSION(KAFKA_STRING)
Value format: AVRO
rowtime: 7/18/19 10:00:00 AM UTC, key: [51.56.119.117@1563444000000/1563444000000], value: {"SESSION_START_TS": "2019-07-18 10:00:00", "SESSION_END_TS": "2019-07-18 10:00:00", "CLICK_COUNT": 1, "SESSION_LENGTH_MS": 0}, partition: 0
rowtime: 7/18/19 10:00:00 AM UTC, key: [51.56.119.117@1563444000000/1563444000000], value: <null>, partition: 0
rowtime: 7/18/19 10:01:00 AM UTC, key: [51.56.119.117@1563444000000/1563444060000], value: {"SESSION_START_TS": "2019-07-18 10:00:00", "SESSION_END_TS": "2019-07-18 10:01:00", "CLICK_COUNT": 2, "SESSION_LENGTH_MS": 60000}, partition: 0
rowtime: 7/18/19 10:01:31 AM UTC, key: [53.170.33.192@1563444091000/1563444091000], value: {"SESSION_START_TS": "2019-07-18 10:01:31", "SESSION_END_TS": "2019-07-18 10:01:31", "CLICK_COUNT": 1, "SESSION_LENGTH_MS": 0}, partition: 0
rowtime: 7/18/19 10:01:00 AM UTC, key: [51.56.119.117@1563444000000/1563444060000], value: <null>, partition: 0
Topic printing ceased
Now that you have a series of statements that’s doing the right thing, the last step is to put them into a file so that they can be used outside the CLI session. Create a file at src/statements.sql
with the following content:
CREATE STREAM clicks (ip VARCHAR, url VARCHAR, timestamp VARCHAR)
WITH (KAFKA_TOPIC='clicks',
TIMESTAMP='timestamp',
TIMESTAMP_FORMAT='yyyy-MM-dd''T''HH:mm:ssX',
PARTITIONS=1,
VALUE_FORMAT='Avro');
CREATE TABLE IP_SESSIONS AS
SELECT IP,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWSTART),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_START_TS,
FORMAT_TIMESTAMP(FROM_UNIXTIME(WINDOWEND),'yyyy-MM-dd HH:mm:ss', 'UTC') AS SESSION_END_TS,
COUNT(*) AS CLICK_COUNT,
WINDOWEND - WINDOWSTART AS SESSION_LENGTH_MS
FROM CLICKS
WINDOW SESSION (5 MINUTES)
GROUP BY IP;
Create a file at test/input.json
with the inputs for testing:
{
"inputs": [
{ "topic": "clicks", "value": { "IP": "51.56.119.117", "URL": "/etiam/justo/etiam/pretium/iaculis.xml", "TIMESTAMP": "2019-07-18T10:00:00Z" } },
{ "topic": "clicks", "value": { "IP": "51.56.119.117", "URL": "/nullam/orci/pede/venenatis.json", "TIMESTAMP": "2019-07-18T10:01:00Z" } },
{ "topic": "clicks", "value": { "IP": "53.170.33.192", "URL": "/mauris/morbi/non.jpg", "TIMESTAMP": "2019-07-18T10:01:31Z" } },
{ "topic": "clicks", "value": { "IP": "51.56.119.117", "URL": "/convallis/nunc/proin.jsp", "TIMESTAMP": "2019-07-18T10:01:36Z" } },
{ "topic": "clicks", "value": { "IP": "53.170.33.192", "URL": "/vestibulum/vestibulum/ante/ipsum/primis/in.json", "TIMESTAMP": "2019-07-18T10:02:00Z" } },
{ "topic": "clicks", "value": { "IP": "51.56.119.117", "URL": "/vehicula/consequat/morbi/a/ipsum/integer/a.jpg", "TIMESTAMP": "2019-07-18T11:03:21Z" } },
{ "topic": "clicks", "value": { "IP": "51.56.119.117", "URL": "/pede/venenatis.jsp", "TIMESTAMP": "2019-07-18T11:03:50Z" } },
{ "topic": "clicks", "value": { "IP": "53.170.33.192", "URL": "/nec/euismod/scelerisque/quam.xml", "TIMESTAMP": "2019-07-18T11:40:00Z" } },
{ "topic": "clicks", "value": { "IP": "53.170.33.192", "URL": "/ligula/nec/sem/duis.jsp", "TIMESTAMP": "2019-07-18T11:40:09Z" } }
]
}
Similarly, create a file at test/output.json
with the expected outputs:
{
"outputs": [
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563444000000, "end":1563444000000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 10:00:00", "SESSION_START_TS":"2019-07-18 10:00:00", "CLICK_COUNT":1, "SESSION_LENGTH_MS":0},"timestamp":1563444000000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563444000000, "end":1563444000000,"type":"session"},"value": null,"timestamp":1563444000000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563444000000, "end":1563444060000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 10:01:00", "SESSION_START_TS":"2019-07-18 10:00:00", "CLICK_COUNT":2, "SESSION_LENGTH_MS":60000},"timestamp":1563444060000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563444091000, "end":1563444091000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 10:01:31", "SESSION_START_TS":"2019-07-18 10:01:31", "CLICK_COUNT":1, "SESSION_LENGTH_MS":0},"timestamp":1563444091000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563444000000, "end":1563444060000,"type":"session"},"value": null,"timestamp":1563444060000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563444000000, "end":1563444096000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 10:01:36", "SESSION_START_TS":"2019-07-18 10:00:00", "CLICK_COUNT":3, "SESSION_LENGTH_MS":96000},"timestamp":1563444096000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563444091000, "end":1563444091000,"type":"session"},"value": null,"timestamp":1563444091000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563444091000, "end":1563444120000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 10:02:00", "SESSION_START_TS":"2019-07-18 10:01:31", "CLICK_COUNT":2, "SESSION_LENGTH_MS":29000},"timestamp":1563444120000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563447801000, "end":1563447801000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 11:03:21", "SESSION_START_TS":"2019-07-18 11:03:21", "CLICK_COUNT":1, "SESSION_LENGTH_MS":0},"timestamp":1563447801000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563447801000, "end":1563447801000,"type":"session"},"value": null,"timestamp":1563447801000},
{"topic":"IP_SESSIONS","key": "51.56.119.117", "window": {"start":1563447801000, "end":1563447830000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 11:03:50", "SESSION_START_TS":"2019-07-18 11:03:21", "CLICK_COUNT":2, "SESSION_LENGTH_MS":29000},"timestamp":1563447830000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563450000000, "end":1563450000000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 11:40:00", "SESSION_START_TS":"2019-07-18 11:40:00", "CLICK_COUNT":1, "SESSION_LENGTH_MS":0},"timestamp":1563450000000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563450000000, "end":1563450000000,"type":"session"},"value": null,"timestamp":1563450000000},
{"topic":"IP_SESSIONS","key": "53.170.33.192", "window": {"start":1563450000000, "end":1563450009000,"type":"session"},"value": {"SESSION_END_TS":"2019-07-18 11:40:09", "SESSION_START_TS":"2019-07-18 11:40:00", "CLICK_COUNT":2, "SESSION_LENGTH_MS":9000},"timestamp":1563450009000}
]
}
Lastly, invoke the tests using the test runner and the statements file that you created earlier:
#!/usr/bin/env bash
docker exec ksqldb ksql-test-runner -i /opt/app/test/input.json -s /opt/app/src/statements.sql -o /opt/app/test/output.json
Which should pass:
>>> Test passed!
Instead of running a local Kafka cluster, you may use Confluent Cloud, a fully managed Apache Kafka service.
Sign up for Confluent Cloud, a fully managed Apache Kafka service.
After you log in to Confluent Cloud Console, click Environments
in the lefthand navigation, click on Add cloud environment
, and name the environment learn-kafka
. Using a new environment keeps your learning resources separate from your other Confluent Cloud resources.
From the Billing & payment
section in the menu, apply the promo code CC100KTS
to receive an additional $100 free usage on Confluent Cloud (details). To avoid having to enter a credit card, add an additional promo code CONFLUENTDEV1
. With this promo code, you will not have to enter a credit card for 30 days or until your credits run out.
Click on LEARN and follow the instructions to launch a Kafka cluster and enable Schema Registry.
Next, from the Confluent Cloud Console, click on Clients
to get the cluster-specific configurations, e.g., Kafka cluster bootstrap servers and credentials, Confluent Cloud Schema Registry and credentials, etc., and set the appropriate parameters in your client application.
Now you’re all set to run your streaming application locally, backed by a Kafka cluster fully managed by Confluent Cloud.