How to split a stream of events into substreams

Question:

How do you split events in a Kafka topic so that the events are placed into subtopics?

Edit this page

Example use case:

Suppose that you have a Kafka topic representing appearances of an actor or actress in a film, with each event denoting the genre. In this tutorial, we'll write a program that splits the stream into substreams based on the genre. We'll have a topic for drama films, a topic for fantasy films, and a topic for everything else. Related pattern: Event Router.

Hands-on code example:

Run it

Prerequisites

1

This tutorial installs Confluent Platform using Docker. Before proceeding:

  • • Install Docker Desktop (version 4.0.0 or later) or Docker Engine (version 19.03.0 or later) if you don’t already have it

  • • Install the Docker Compose plugin if you don’t already have it. This isn’t necessary if you have Docker Desktop since it includes Docker Compose.

  • • Start Docker if it’s not already running, either by starting Docker Desktop or, if you manage Docker Engine with systemd, via systemctl

  • • Verify that Docker is set up properly by ensuring no errors are output when you run docker info and docker compose version on the command line

Initialize the project

2

To get started, make a new directory anywhere you’d like for this project:

mkdir split-stream && cd split-stream
3

Next, create the following docker-compose.yml file to obtain Confluent Platform (for Kafka in the cloud, see Confluent Cloud) and Apache Flink®. The Docker Compose file will start three Flink® containers that have Kafka connector dependencies preinstalled: an interactive Flink SQL client (flink-sql-client) that sends streaming SQL jobs to the Flink Job Manager (flink-job-manager), which in turn assigns tasks to the Flink Task Manager (flink-task-manager) in the Flink cluster.

version: '2'
services:
  broker:
    image: confluentinc/cp-kafka:7.4.1
    hostname: broker
    container_name: broker
    ports:
      - 29092:29092
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT,CONTROLLER:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:9092,PLAINTEXT_HOST://localhost:29092
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
      KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
      KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
      KAFKA_PROCESS_ROLES: broker,controller
      KAFKA_NODE_ID: 1
      KAFKA_CONTROLLER_QUORUM_VOTERS: 1@broker:29093
      KAFKA_LISTENERS: PLAINTEXT://broker:9092,CONTROLLER://broker:29093,PLAINTEXT_HOST://0.0.0.0:29092
      KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT
      KAFKA_CONTROLLER_LISTENER_NAMES: CONTROLLER
      KAFKA_LOG_DIRS: /tmp/kraft-combined-logs
      CLUSTER_ID: MkU3OEVBNTcwNTJENDM2Qk
  schema-registry:
    image: confluentinc/cp-schema-registry:7.3.0
    hostname: schema-registry
    container_name: schema-registry
    depends_on:
      - broker
    ports:
      - 8081:8081
    environment:
      SCHEMA_REGISTRY_HOST_NAME: schema-registry
      SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: broker:9092
  flink-sql-client:
    image: cnfldemos/flink-sql-client-kafka:1.16.0-scala_2.12-java11
    hostname: flink-sql-client
    container_name: flink-sql-client
    depends_on:
      - flink-jobmanager
    environment:
      FLINK_JOBMANAGER_HOST: flink-jobmanager
    volumes:
      - ./settings/:/settings
  flink-jobmanager:
    image: cnfldemos/flink-kafka:1.16.0-scala_2.12-java11
    hostname: flink-jobmanager
    container_name: flink-jobmanager
    ports:
      - 9081:9081
    command: jobmanager
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: flink-jobmanager
        rest.bind-port: 9081
  flink-taskmanager:
    image: cnfldemos/flink-kafka:1.16.0-scala_2.12-java11
    hostname: flink-taskmanager
    container_name: flink-taskmanager
    depends_on:
      - flink-jobmanager
    command: taskmanager
    scale: 1
    environment:
      - |
        FLINK_PROPERTIES=
        jobmanager.rpc.address: flink-jobmanager
        taskmanager.numberOfTaskSlots: 10

Launch it by running:

docker compose up -d

Write the program interactively using the CLI

4

The best way to interact with Flink SQL when you’re learning how things work is with the Flink SQL CLI. Fire it up as follows:

docker exec -it flink-sql-client sql-client.sh

First, you’ll need to create a stream to represent the actor / movie combinations. This line of Flink SQL DDL creates a table and its underlying Kafka topic. Note that we are defining the schema for the table, which includes three fields: name, actor’s name; title, the title of the movie the actor is in; and genre, the genre of the movie. The statement also specifies the underlying Kafka topic as acting-events, that it should have a single partition (the default num.partitions configured in the broker), and defines Avro as its data format.

CREATE TABLE acting_events (
    name STRING,
    title STRING,
    genre STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events',
    'properties.bootstrap.servers' = 'broker:9092',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://schema-registry:8081',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://schema-registry:8081',
    'value.fields-include' = 'ALL'
);

Confluent Cloud manages several options for you when using Flink SQL. So, if you run this tutorial on Confluent Cloud, you can copy just the CREATE TABLE statements without the WITH clause when creating tables. Consult the Flink SQL WITH documentation for the full list supported options when creating a table.

Let’s add a small amount of data to our table, so we can see subsequent event routing queries work. Go ahead and paste this statement into the Flink SQL CLI now.

INSERT INTO acting_events VALUES
    ('Bill Murray', 'Ghostbusters', 'fantasy'),
    ('Christian Bale', 'The Dark Knight', 'crime'),
    ('Diane Keaton', 'The Godfather: Part II', 'crime'),
    ('Jennifer Aniston', 'Office Space', 'comedy'),
    ('Judy Garland', 'The Wizard of Oz', 'fantasy'),
    ('Keanu Reeves', 'The Matrix', 'fantasy'),
    ('Laura Dern', 'Jurassic Park', 'fantasy'),
    ('Matt Damon', 'The Martian', 'drama'),
    ('Meryl Streep', 'The Iron Lady', 'drama'),
    ('Russell Crowe', 'Gladiator', 'drama'),
    ('Will Smith', 'Men in Black', 'comedy');

With our test data in place, let’s execute a query to find all of the actor / movie combinations for drama films.

This query will continue to return results until you quit by entering Q.

SELECT name, title
FROM acting_events
WHERE genre = 'drama';

This should yield the following output:

                           name                          title
                     Matt Damon                    The Martian
                   Meryl Streep                  The Iron Lady
                  Russell Crowe                      Gladiator

Enter Q to return to the Flink SQL prompt.

Note that these results were materialized in memory and printed in a human-readable table representation because the default sql-client.execution.result-mode configuration value is 'table'. You can view non-materialized streaming results as a changelog by running SET 'sql-client.execution.result-mode' = 'changelog'; and rerunning the same query. The results will look like this:

 op                           name                          title
 +I                     Matt Damon                    The Martian
 +I                   Meryl Streep                  The Iron Lady
 +I                  Russell Crowe                      Gladiator

Or, as a third option, you can see streaming results non-materialized and inline in the SQL client by running SET 'sql-client.execution.result-mode' = 'tableau'; and rerunning the query once more. In this case, the results will look very similar to changelog mode results. This is because tables sourced by the Kafka connector are unbounded and can thus only be queried in streaming mode. For further reading on these Flink SQL concepts, consult the documentation on SQL client result modes and streaming vs. batch execution

You can also use negative matches, that is, messages that don’t match the condition. Run this query to get a list of all actor / movie combinations for films that aren’t drama or fantasy.

SELECT name, title
FROM acting_events
WHERE genre <> 'drama' AND genre <> 'fantasy';

This should yield the following output (assuming the result mode is still tableau):

+----+--------------------------------+--------------------------------+
| op |                           name |                          title |
+----+--------------------------------+--------------------------------+
| +I |                 Christian Bale |                The Dark Knight |
| +I |                   Diane Keaton |         The Godfather: Part II |
| +I |               Jennifer Aniston |                   Office Space |
| +I |                     Will Smith |                   Men in Black |

Enter Ctrl-C to return to the Flink SQL prompt.

Since the output of our transient queries looks right, the next step is to make the queries persistent with the following statements. Go ahead and run the following six commands in your Flink SQL session:

CREATE TABLE acting_events_drama (
    name  STRING,
    title STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events-drama',
    'properties.bootstrap.servers' = 'broker:9092',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://schema-registry:8081',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://schema-registry:8081',
    'value.fields-include' = 'ALL'
);
INSERT INTO acting_events_drama
    SELECT name, title
    FROM acting_events
    WHERE genre = 'drama';
CREATE TABLE acting_events_fantasy (
    name  STRING,
    title STRING
)
    WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events-fantasy',
    'properties.bootstrap.servers' = 'broker:9092',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://schema-registry:8081',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://schema-registry:8081',
    'value.fields-include' = 'ALL'
);
INSERT INTO acting_events_fantasy
    SELECT name, title
    FROM acting_events
    WHERE genre = 'fantasy';
CREATE TABLE acting_events_other (
    name  STRING,
    title STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events-other',
    'properties.bootstrap.servers' = 'broker:9092',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://schema-registry:8081',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://schema-registry:8081',
    'value.fields-include' = 'ALL'
);
INSERT INTO acting_events_other
    SELECT name, title
    FROM acting_events
    WHERE genre <> 'drama' AND genre <> 'fantasy';

Validate output

5

Seeing is believing, so let’s query the persistent acting_events_fantasy table. First, set the result mode back to table:

SET 'sql-client.execution.result-mode' = 'table';

Then query the acting_events_fantasy table:

SELECT
    name,
    title
FROM acting_events_fantasy;

This will yield the same output that the transient query did:

                           name                          title
                    Bill Murray                   Ghostbusters
                   Judy Garland               The Wizard of Oz
                   Keanu Reeves                     The Matrix
                     Laura Dern                  Jurassic Park

We could also query the underlying topic directly using kafka-avro-console-consumer. Open a new terminal window and run the following command:

docker exec -e SCHEMA_REGISTRY_LOG4J_OPTS=" " -it schema-registry /usr/bin/kafka-avro-console-consumer \
  --topic acting-events-fantasy \
  --from-beginning \
  --max-messages 4 \
  --timeout-ms 10000 \
  --bootstrap-server broker:9092

This will yield the following results:

{"name":{"string":"Bill Murray"},"title":{"string":"Ghostbusters"}}
{"name":{"string":"Judy Garland"},"title":{"string":"The Wizard of Oz"}}
{"name":{"string":"Keanu Reeves"},"title":{"string":"The Matrix"}}
{"name":{"string":"Laura Dern"},"title":{"string":"Jurassic Park"}}
Processed a total of 4 messages

Now go ahead and query the acting_events_drama and acting_events_other tables similarly.

Test it

Decide what testing tools to use

1

Now that you have manually developed and tested your Flink SQL application, how might you create an automated test for it so that it’s easier to maintain and upgrade over time? Imagine how painful it would be to have to manually test every change or software dependency upgrade of your application, and then imagine having to do this for many applications. The benefits of automated testing are clear, but how do we get there?

First, what do we want in an automated integration test? For starters:

  1. Real services (as opposed to mock) that our application depends on

  2. Small resource footprint so that developers can run the test locally

  3. Low enough latency so that development iterations aren’t hampered — not as low latency as is required for a unit test, but test duration should be on the order of seconds

  4. Isolation so that many tests can run concurrently on the same machine when this test gets run on a build automation server, e.g., no hard-coded ports

Luckily, tools are at our disposal to solve these problems. We’ll use Testcontainers to run containerized Kafka and Schema Registry servers on dynamic ports, Flink’s support for local execution environments so that we don’t need to spin up a Flink cluster, and Flink’s Table API to execute the Flink SQL statements that comprise our application.

Create the test skeleton

2

The primary choices for programming language in which to write our tests are Java and Python given the need for Flink’s Table API. We’ll write ours in Java.

To start our test project, make new directories for test source code and resources within the same split-stream folder that you created earlier:

mkdir -p src/test/java/io/confluent/developer
mkdir src/test/resources

Create the following Gradle build file, named build.gradle, in the split-stream directory.

buildscript {
    repositories {
        mavenCentral()
    }
}

plugins {
    id "java"
}

sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11
version = "0.0.1"

repositories {
    mavenCentral()
}

dependencies {
    testImplementation "com.google.guava:guava:31.1-jre"
    testImplementation "junit:junit:4.13.2"
    testImplementation 'org.testcontainers:testcontainers:1.17.6'
    testImplementation 'org.testcontainers:kafka:1.17.6'
    testImplementation "org.apache.flink:flink-sql-connector-kafka:1.16.1"
    testImplementation "org.apache.flink:flink-sql-avro-confluent-registry:1.16.1"
    testImplementation "org.apache.flink:flink-test-utils:1.16.1"
    testImplementation "org.apache.flink:flink-test-utils-junit:1.16.1"
    testImplementation "org.apache.flink:flink-table-api-java-bridge:1.16.1"
    testImplementation "org.apache.flink:flink-table-planner_2.12:1.16.1"
    testImplementation "org.apache.flink:flink-table-planner_2.12:1.16.1:tests"
    testImplementation "org.apache.flink:flink-statebackend-rocksdb:1.16.1"
}

There are a couple of important points to note in the Gradle build file:

  1. Java sourceCompatibility and targetCompatibility are set to Java 11. Flink supports Java 8 (deprecated) and 11 as of the writing of this tutorial

  2. The dependencies section declares test dependencies for Testcontainers and Flink. Among the handful of Flink dependencies are ones providing local execution (e.g., flink-statebackend-rocksdb), the Table API (flink-table-api-java-bridge), and Kafka connectors that can use Schema Registry (flink-sql-connector-kafka and flink-sql-avro-confluent-registry).

And be sure to run the following command to obtain the Gradle wrapper:

gradle wrapper

Create SQL resources

3

We could always inline the SQL statements in our Java test code, but creating separate resource files makes our test more readable and easier to maintain. Further, we can imagine parametrizing URLs as well so that we can have a single set of source-controlled queries to use in tests as well as staging or production environments.

There are a handful of resources to create for our test. These mirror the queries that we developed earlier.

Create the following file at src/test/resources/create-acting-events.sql.template. Note the KAFKA_PORT and SCHEMA_REGISTRY_PORT placeholders in this file. Our test will dynamically assign these to the ports that Testcontainers assigns.

CREATE TABLE acting_events (
    name STRING,
    title STRING,
    genre STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events',
    'properties.bootstrap.servers' = 'localhost:KAFKA_PORT',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://localhost:SCHEMA_REGISTRY_PORT',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://localhost:SCHEMA_REGISTRY_PORT',
    'value.fields-include' = 'ALL'
);

Create the following file at src/test/resources/populate-acting-events.sql.

INSERT INTO acting_events VALUES
    ('Bill Murray', 'Ghostbusters', 'fantasy'),
    ('Christian Bale', 'The Dark Knight', 'crime'),
    ('Diane Keaton', 'The Godfather: Part II', 'crime'),
    ('Jennifer Aniston', 'Office Space', 'comedy'),
    ('Judy Garland', 'The Wizard of Oz', 'fantasy'),
    ('Keanu Reeves', 'The Matrix', 'fantasy'),
    ('Laura Dern', 'Jurassic Park', 'fantasy'),
    ('Matt Damon', 'The Martian', 'drama'),
    ('Meryl Streep', 'The Iron Lady', 'drama'),
    ('Russell Crowe', 'Gladiator', 'drama'),
    ('Will Smith', 'Men in Black', 'comedy');

Create the following file at src/test/resources/create-acting-events-drama.sql.template. Again, note the KAFKA_PORT and SCHEMA_REGISTRY_PORT placeholders.

CREATE TABLE acting_events_drama (
    name  STRING,
    title STRING
) WITH (
    'connector' = 'kafka',
    'topic' = 'acting-events-drama',
    'properties.bootstrap.servers' = 'localhost:KAFKA_PORT',
    'scan.startup.mode' = 'earliest-offset',
    'key.format' = 'avro-confluent',
    'key.avro-confluent.url' = 'http://localhost:SCHEMA_REGISTRY_PORT',
    'key.fields' = 'name;title',
    'value.format' = 'avro-confluent',
    'value.avro-confluent.url' = 'http://localhost:SCHEMA_REGISTRY_PORT',
    'value.fields-include' = 'ALL'
);

Next create the following file at src/test/resources/populate-acting-events-drama.sql.

INSERT INTO acting_events_drama
    SELECT name, title
    FROM acting_events
    WHERE genre = 'drama';

Next, create the following file at src/test/resources/query-acting-events-drama.sql:

SELECT * FROM acting_events_drama;

Finally, create the following file at src/test/resources/expected-acting-events-drama.txt that contains our test’s expected output:

+----+--------------------------------+--------------------------------+
| op |                           name |                          title |
+----+--------------------------------+--------------------------------+
| +I |                     Matt Damon |                    The Martian |
| +I |                   Meryl Streep |                  The Iron Lady |
| +I |                  Russell Crowe |                      Gladiator |

Write a test

4

Create the following abstract test class at src/test/java/io/confluent/developer/AbstractFlinkKafkaTest.java:

package io.confluent.developer;


import com.google.common.io.Resources;
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.contrib.streaming.state.EmbeddedRocksDBStateBackend;
import org.apache.flink.runtime.client.JobCancellationException;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.assertj.core.util.Sets;
import org.junit.BeforeClass;
import org.testcontainers.containers.GenericContainer;
import org.testcontainers.containers.KafkaContainer;
import org.testcontainers.containers.Network;
import org.testcontainers.utility.DockerImageName;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.net.URL;
import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Optional;
import java.util.Set;

import static org.testcontainers.containers.KafkaContainer.KAFKA_PORT;

/**
 * Base class for Flink SQL integration tests that use Flink's Kafka connectors. Encapsulates
 * Kafka broker and Schema Registry Testcontainer management and includes utility methods for
 * dynamically configuring Flink SQL Kafka connectors and processing Table API results.
 */
public class AbstractFlinkKafkaTest {

  protected static StreamTableEnvironment streamTableEnv;
  protected static Integer schemaRegistryPort, kafkaPort;

  @BeforeClass
  public static void setup() {
    // create Flink table environment that test subclasses will use to execute SQL statements
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    env.setParallelism(4);
    env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
    env.setStateBackend(new EmbeddedRocksDBStateBackend());
    streamTableEnv = StreamTableEnvironment.create(env, EnvironmentSettings.newInstance().inStreamingMode().build());


    // Start Kafka and Schema Registry Testcontainers. Set the exposed ports that test subclasses
    // can use to dynamically configure Kafka connectors. Schema Registry enables connectors to
    // be configured with 'value.format' = 'avro-confluent'
    Network network = Network.newNetwork();

    KafkaContainer kafka = new KafkaContainer(DockerImageName.parse("confluentinc/cp-kafka:7.4.1"))
        .withEnv("KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR", "1")
        .withEnv("KAFKA_TRANSACTION_STATE_LOG_MIN_ISR", "1")
        .withEnv("KAFKA_TRANSACTION_STATE_LOG_NUM_PARTITIONS", "1")
        .withEnv("KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS", "500")
        .withEnv("KAFKA_AUTO_CREATE_TOPICS_ENABLE", "true")
        .withReuse(true)
        .withNetwork(network);
    kafka.start();
    kafkaPort = kafka.getMappedPort(KAFKA_PORT);

    GenericContainer schemaRegistry = new GenericContainer(DockerImageName.parse("confluentinc/cp-schema-registry:7.4.1"))
        .withExposedPorts(8081)
        .withNetwork(kafka.getNetwork())
        .withEnv("SCHEMA_REGISTRY_HOST_NAME", "localhost")
        .withEnv("SCHEMA_REGISTRY_LISTENERS", "http://0.0.0.0:8081")
        .withEnv("SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS", "PLAINTEXT://" + kafka.getNetworkAliases().get(0) + ":9092");
    schemaRegistry.start();
    schemaRegistryPort = schemaRegistry.getMappedPort(8081);
  }

  /**
   * Given a resource filename and optional Kafka / Schema Registry ports, return the resource
   * file contents as a String with ports substituted for KAFKA_PORT and SCHEMA_REGISTRY_PORT
   * placeholders.
   *
   * @param resourceFileName    the resource file name
   * @param kafkaPort           the port that Kafka broker exposes
   * @param schemaRegistryPort  the port that Schema Registry exposes
   * @return resource file contents with port values substituted for placeholders
   * @throws IOException if resource file can't be read
   */
  protected static String getResourceFileContents(
      String resourceFileName,
      Optional<Integer> kafkaPort,
      Optional<Integer> schemaRegistryPort
  ) throws IOException {
    URL url = Resources.getResource(resourceFileName);
    String contents = Resources.toString(url, StandardCharsets.UTF_8);
    if (kafkaPort.isPresent()) {
      contents = contents.replaceAll("KAFKA_PORT", kafkaPort.get().toString());
    }
    if (schemaRegistryPort.isPresent()) {
      contents = contents.replaceAll("SCHEMA_REGISTRY_PORT", schemaRegistryPort.get().toString());
    }
    return contents;
  }

  /**
   * Given a resource filename, return the resource file contents as a String.
   *
   * @param resourceFileName    the resource file name
   * @return resource file contents
   * @throws IOException if resource file can't be read
   */
  protected static String getResourceFileContents(
      String resourceFileName
  ) throws IOException {
    // no Kafka / Schema Registry ports
    return getResourceFileContents(resourceFileName, Optional.empty(), Optional.empty());
  }

  /**
   * Utility method to convert a String containing multiple lines into a set of String's where
   * each String is one line. This is useful for creating Flink SQL integration tests based on
   * the tableau results printed via the Table API where the order of results is nondeterministic.
   *
   * @param s multiline String
   * @return set of String's where each member is one line
   */
  protected static Set<String> stringToLineSet(String s) {
    return Sets.newHashSet(Arrays.asList(s.split("\\r?\\n")));
  }

  /**
   * Given a Flink Table API `TableResult` respresenting a SELECT statement result,
   * capture and return the statement's tableau results.
   *
   * @param tableResult Flink Table API `TableResult` respresenting a SELECT statement result
   * @return the SELECT statement's tableau results
   */
  protected static String tableauResults(TableResult tableResult) {
    // capture tableau results printed to stdout in a String
    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    System.setOut(new PrintStream(baos));

    // The given table result may come from a table backed by the Kafka or Upsert Kafka connector,
    // both of which perform unbounded (neverending) scans. So, in order to prevent tests from blocking
    // on calls to this method, we kick off a thread to kill the underlying job once output has
    // been printed.
    //
    // Note: as of Flink 1.17.0, the Kafka connector will support bounded scanning, which would obviate
    // the need to do this. However, the Upsert Kafka connector will still be unbounded.
    new Thread(() -> {
      while (0 == baos.size()) {
        try {
          Thread.sleep(500);
        } catch (InterruptedException e) {
          // do nothing; keep waiting
        }
      }
      tableResult.getJobClient().get().cancel();
    }).start();

    try {
      tableResult.print();
    } catch (RuntimeException rte) {
      if (ExceptionUtils.indexOfThrowable(rte, JobCancellationException.class) != -1) {
        // a JobCancellationException in the exception stack is expected due to delayed
        // job cancellation in separate thread; do nothing
      } else {
        rte.printStackTrace();
        System.exit(1);
      }
    }
    System.setOut(System.out);
    return baos.toString();
  }

}

Take a look at this class. It contains the functionality and utility methods that any Flink SQL test would use. Namely, it encapsulates Kafka broker and Schema Registry Testcontainer management and includes utility methods for dynamically configuring Flink SQL Kafka connectors and processing Table API results.

Next, create the test implementation at src/test/java/io/confluent/developer/FlinkSqlSplitStreamTest.java:

package io.confluent.developer;


import org.apache.flink.table.api.TableResult;
import org.junit.Test;

import java.util.Optional;

import static org.junit.Assert.assertEquals;

public class FlinkSqlSplitStreamTest extends AbstractFlinkKafkaTest {

  @Test
  public void simpleSelect() throws Exception {
    // create base acting events table and aggregation table, and populate with test data
    streamTableEnv.executeSql(getResourceFileContents("create-acting-events.sql.template",
        Optional.of(kafkaPort), Optional.of(schemaRegistryPort))).await();
    streamTableEnv.executeSql(getResourceFileContents("populate-acting-events.sql"));
    streamTableEnv.executeSql(getResourceFileContents("create-acting-events-drama.sql.template",
        Optional.of(kafkaPort), Optional.of(schemaRegistryPort))).await();
    streamTableEnv.executeSql(getResourceFileContents("populate-acting-events-drama.sql"));

    // execute query on result table that should have drama acting events
    TableResult tableResult = streamTableEnv.executeSql(getResourceFileContents("query-acting-events-drama.sql"));

    // Compare actual and expected results. Convert result output to line sets to compare so that order
    // doesn't matter.
    String actualTableauResults = tableauResults(tableResult);
    String expectedTableauResults = getResourceFileContents("expected-acting-events-drama.txt");
    assertEquals(stringToLineSet(actualTableauResults), stringToLineSet(expectedTableauResults));
  }

}

The test itself is straightforward to follow. It executes the SQL from our resource files, then runs a select statement against the final output TABLE of our application and compares the results to what’s expected.

Invoke the test

5

Now run the test, which is as simple as:

./gradlew test

Deploy on Confluent Cloud

Run your app with Confluent Cloud

1

Instead of running a local Kafka cluster, you may use Confluent Cloud, a fully managed Apache Kafka service.

  1. Sign up for Confluent Cloud, a fully managed Apache Kafka service.

  2. After you log in to Confluent Cloud Console, click Environments in the lefthand navigation, click on Add cloud environment, and name the environment learn-kafka. Using a new environment keeps your learning resources separate from your other Confluent Cloud resources.

  3. From the Billing & payment section in the menu, apply the promo code CC100KTS to receive an additional $100 free usage on Confluent Cloud (details). To avoid having to enter a credit card, add an additional promo code CONFLUENTDEV1. With this promo code, you will not have to enter a credit card for 30 days or until your credits run out.

  4. Click on LEARN and follow the instructions to launch a Kafka cluster and enable Schema Registry.

Confluent Cloud

Next, from the Confluent Cloud Console, click on Clients to get the cluster-specific configurations, e.g., Kafka cluster bootstrap servers and credentials, Confluent Cloud Schema Registry and credentials, etc., and set the appropriate parameters in your client application.

Now you’re all set to run your streaming application locally, backed by a Kafka cluster fully managed by Confluent Cloud.