Get Started Free
September 9, 2021 | Episode 175

What Is Data Mesh, and How Does it Work? ft. Zhamak Dehghani

  • Transcript
  • Notes

The data mesh architectural paradigm shift is all about moving analytical data away from a monolithic data warehouse or data lake into a distributed architecture—allowing data to be shared for analytical purposes in real time, right at the point of origin. The idea of data mesh was introduced by Zhamak Dehghani (Director of Emerging Technologies, Thoughtworks) in 2019.  Here, she provides an introduction to data mesh and the fundamental problems that it’s trying to solve. 

Zhamak describes that the complexity and ambition to use data have grown in today’s industry. But what is data mesh? For over half a century, we’ve been trying to democratize data to deliver value and provide better analytic insights. With the ever-growing number of distributed domain data sets, diverse information arrives in increasing volumes and with high velocity. To remove the friction and serve the requirement for data to be consumed by operational needs in various use cases, the best way is to mesh the data. This means connecting data through a peer-to-peer fashion and liberating data for analytics, machine learning, serving up data-intensive applications across the organization, and more. Data mesh tackles the deficiency of the traditional, centralized data lake and data warehouse platform architecture. 

The data mesh paradigm is founded on four principles: 

  1. Domain-oriented ownership
  2. Data as a product
  3. Data available everywhere in a self-serve data infrastructure
  4. Data standardization governance

A decentralized, agnostic data structure enables you to synthesize data and innovate. The starting point is embracing the ideology that data can be anywhere. Source-aligned data should serve as a product available for people across the organization to combine, explore, and drive actionable insights. Zhamak and Tim also discuss the next steps we need to take in order to bring data mesh to life at the industry level.

To learn more about the topic, you can visit the all-new Confluent Developer course: Data Mesh 101. Confluent Developer is a single destination with resources to begin your Kafka journey.  

Continue Listening

Episode 176September 14, 2021 | 35 min

How to Build a Strong Developer Community with Global Engagement ft. Robin Moffatt and Ale Murray

A developer community brings people with shared interests and purpose together. The fundamental elements of a community are to gather, learn, support, and create opportunities for collaboration. A developer community is also an effective and efficient instrument for exploring and solving problems together.

Episode 177September 21, 2021 | 15 min

Apache Kafka 3.0 - Improving KRaft and an Overview of New Features

Apache Kafka 3.0 is out! To spotlight major enhancements in this release, Tim Berglund (Apache Kafka Developer Advocate) provides a summary of what’s new in the Kafka 3.0 release from Krakow, Poland, including API changes and improvements to the early-access Kafka Raft (KRaft).

Episode 178September 23, 2021 | 30 min

Designing a Cluster Rollout Management System for Apache Kafka ft. Twesha Modi

As one of the top coders of her Java coding class in high school, Twesha Modi is continuing to follow her passion for computer science as a senior at Cornell University, where she has proven to be one of the top programmers. During Twesha's summer internship at Confluent, she contributed to designing a new service to automate Apache Kafka cluster rollout management—a process that releases the latest Kafka versions to customer’s clusters in Confluent Cloud.

Got questions?

If there's something you want to know about Apache Kafka, Confluent or event streaming, please send us an email with your question and we'll hope to answer it on the next episode of Ask Confluent.

Email Us

Never miss an episode!

Confluent Cloud is a fully managed Apache Kafka service available on all three major clouds. Try it for free today.

Try it for free